

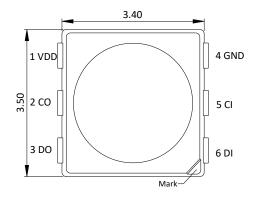
6SC3535VGBC1MCK3-2 Datasheet

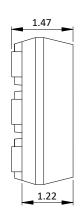
IC LED Series (L* W*H): 3.5*3.4*1.47mm

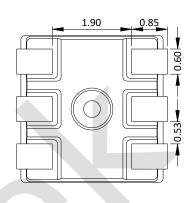
Applications

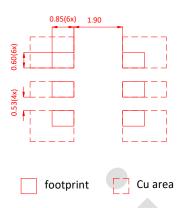
Automotive interior light

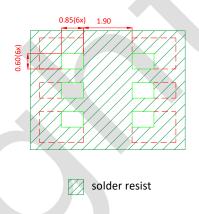
Functional Illumination

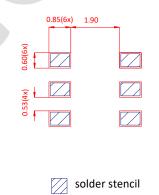

Features


- Serial data transmission signal by dual-wire (DATA & CLK) lines.
- Each LED contains R, G, B three colors, every color can achieve 256 levels of brightness creating a palette of 16,777,216 colors.
- Supports sleep / wake-up mode. In sleep mode, the LED's current was lower than 1uA.


- RoHS2.0 Compliant.
- ESD level 2kV(HBM).
- Preconditioning: accelerate to JEDEC level 3.
- Typical view angle:120°
- Qualifications: AEC-Q 100/AEC-Q102 qualified.




Dimensional Drawing



- 1. Dimensions are in millimeters.
- 2. General tolerance is ± 0.1 mm.

No.	Symbol	Function description		
1	VDD	Supply voltage		
2	СО	Clock output		
3	DO	Data output		
4	GND	Ground		
5	CI	Clock input		
6	DI	Data input		

Maximum Ratings

T_A: 25 °C

Parameter	Symbol				Values	
IC Power Supply Voltage	V_{DD}	max.			6.5	V
Rate of Data Signal	F_{CLK}	max.			15	MHz
Maximum Output Current	I _{OMAX}	max.			20	mA
Thermal Resistance Junction/	RTHJ-S	may	R	G	В	°C /W
Solder Point	ктпл-2	max	65	110	100	C/VV
Power Dissipation	P_{D}	max.			400	mW
Junction Temperature	T_j	max.			125	°C
Operating Tomporature Pange	T_OP	min.			-40	°C
Operating Temperature Range		max.			105	
Storage Temperature Range	т.	min.			-40	°C
Storage remperature name	T_{stg}	max.			105	
Soldering Temperature	T_{SD}	max.			260	°C
ESD Withstand Voltage acc. to ANSI/ESDA/JEDEC JS-001	V_{ESD}	max.			2	kV

Electrical Characteristics

T_A: 25 °C

Characteristics	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V_{DD}		4.5	5.0	5.5	V
Input High Voltage	V _{IH}		2.7	-	V _{DD} +0.4	V
Input Low Voltage	V _{IL}		-0.4	-	1.0	V
The Clock High Level Width	T _{CKH}		30	-	-	ns
The Clock Low Level Width	T _{CKL}		30	-	-	ns
Data Set Up Time	T _{SETUP}		10	-	-	ns
Data Hold Time	T _{HOLD}		5	-	<u> </u>	ns
Working Current(IC)	I _{DD}	I out= "OFF"	-	-	1.5	mA
Static Current	I _{sleep}	Sleep mode			1	uA
ESD Pressure	V _{ESD}	НВМ		2		kV

Characteristics

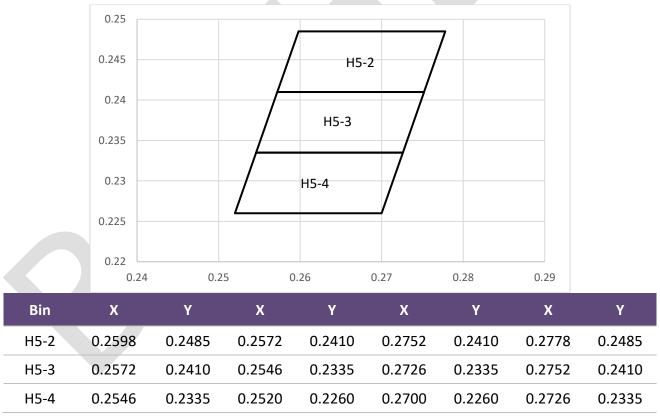
 V_{DD} =5V | I_F =20mA | T_A : 25 °C

Parameter	Syml	ool	Min.	Тур.	Max.	Unit
		R	530	900	1500	
Luminous Intonsitu	lv	G	1000	1700	2850	mad
Luminous Intensity		В	230	400	700	mcd
		W	1700	2900	4800	
		R	615	-	630	>
Dominant Wavelength	1 λ_{d}	G	520	-	535	nm
		В	460	-	475	
Color Coordinate	Х		-	0.2662	-	-
Color Coordinate	У		-	0.2410	<u>-</u>	-
View Angle	2θ1,	/2	-	120	-	o

1. Tolerance of Measure:

Luminous Intensity: ±10%mcd, Dominant Wavelength: ±1.0nm, Color Coordinate: ±0.005

Bin Groups

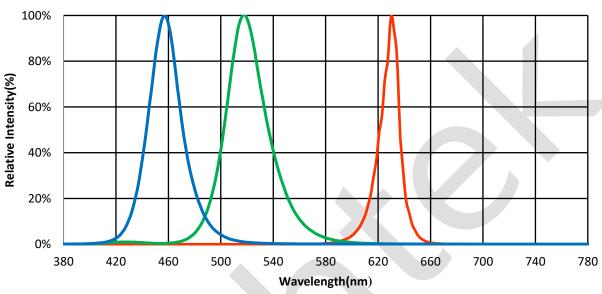

1. Luminous Intensity

 V_{DD} =5V | I_F =20mA | T_A : 25 °C

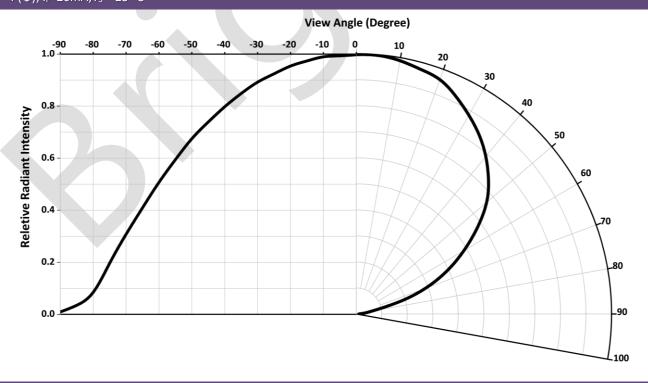
Bin Code	Min. I _V (mcd)	Max. I _V (mcd)
17	1700	2200
18	2200	2800
19	2800	3600
20	3600	4800

2. Chromaticity Coordinate Groups

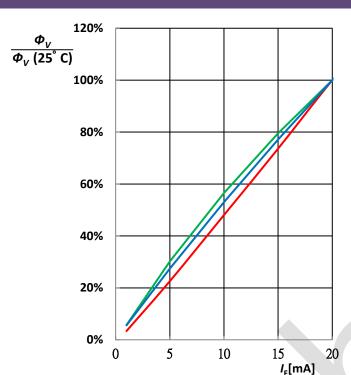
V_{DD}=5V | I_F=20mA | T_A: 25 °C


Tolerance of X/Y: ±0.005

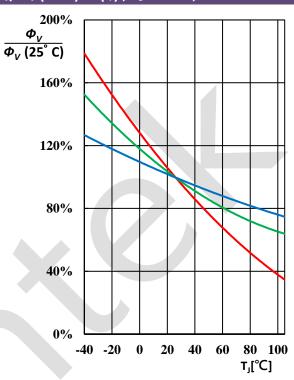
Relative Spectral Power Distribution

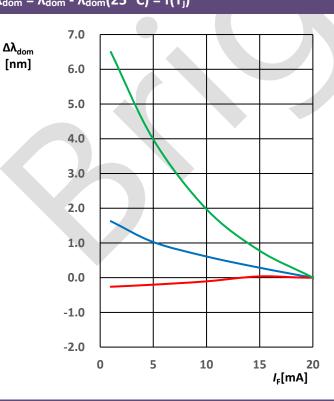


Typical Diagram Characteristics of Radiation

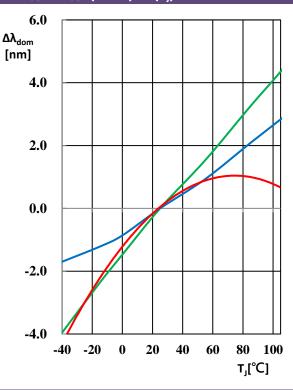

Relative Spectral Emission

 $I_{rel} = f (\Phi); I_F = 20 \text{mA}; T_S = 25 \text{ °C}$



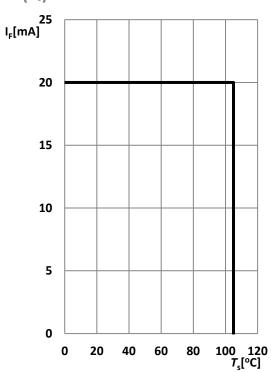

Relative Intensity vs. Forward Current Φ_V/Φ_V (25°C) = f(I_F); TS = 25 °C;

Relative Intensity vs. Temperature Φ_V/Φ_V (25°C) = f(I_F); T_S = 25 °C;

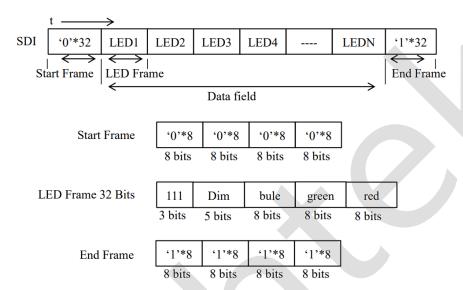


Dominant Wavelength $\Delta \lambda_{dom} = \lambda_{dom} - \lambda_{dom} (25 ^{\circ}C) = f(T_j)$

Dominant Wavelength

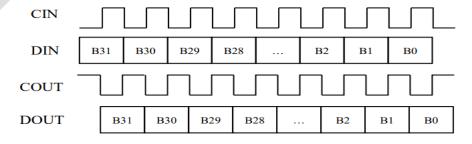

 $\Delta \lambda_{\text{dom}} = \lambda_{\text{dom}} - \lambda_{\text{dom}} (25 \, ^{\circ}\text{C}) = f(T_{\text{j}})$

Max. Permissible Forward Current



Function Description

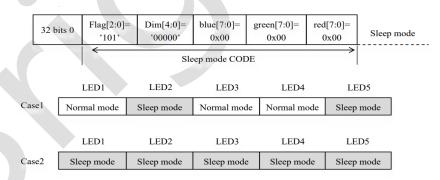
1.Series data structure


Tandem N-LED

1.1 5-Bit Brightness Adjustment and Specification Limits
DIM 5-Bit (level 32) brightness adjustment involves simultaneous control of OUTR\OUTG\OUTB three port currents.

Data MSB←→LSB	Driving Current
00000	0/31
00001	1/31
00010	2/31
11110	30/31
11111	31/31(max)

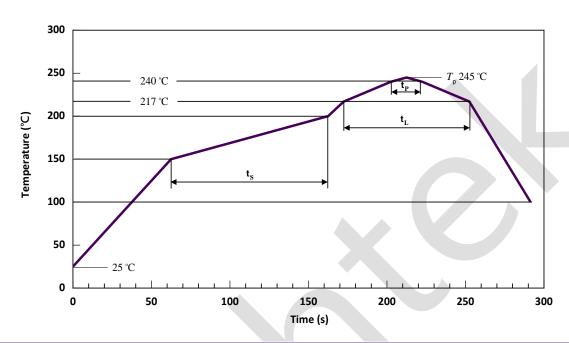
1.2 PWM input/output signals relations



2.Sleep and power saving mode

Data MSB	Duty Cycle
0000000	0/255(min)
0000001	1/255
0000010	2/255
11111101	253/255
11111110	254/255
1111111	255/255(max)

The LED supports sleep/wake-up modes for power-saving purposes. Upon receiving 24 bits of '0's in BGR data (where BLUE[7:0]=8h00, G[7:0]=8h00, R[7:0]=8h00), concurrently, both the 3-bit flag and the 5-bit DIMMING are set to 8h"A0" (indicating FLAG[2:0]=3b101 and DIMMING[4:0]=5b00000), the IC will enter sleep mode with a current of approximately 1uA. The IC will awaken from sleep mode upon receiving new data where Flag[2:0] and DIMMING[4:0] are not 8h"A0". Following the wake-up, all sleeping circuits within the IC return to normal operating mode within 1ms. Considering the 1ms required for the IC to transition from sleep to normal function, it is recommended for the host to wait 1ms after issuing a wake-up command before sending display data and commands.

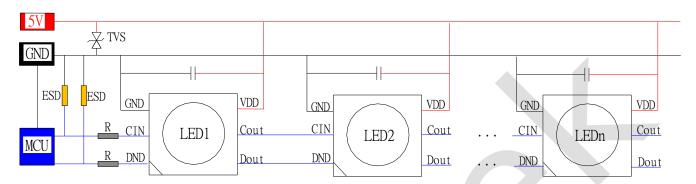


In Case 1, if LED 2 is in sleep mode, during the subsequent data transfer process, the state of LED 2 will remain unchanged as long as 32 bits of data for LED 2 is received with Flag[2:0], DIMMING[4:0] set as 8h"A0". This indicates that LED 2 will remain in sleep mode. In this scenario, LED 2 can relay the remaining 32 bits of data to LED 3 to modify the display data of LED 3. In essence, the inactive chip (LED 2 in sleep mode) has the capability to relay data to the subsequent chips.

Reflow Soldering Profile

Product complies to MSL Level 3 acc. to JEDEC J-STD-020E

Profile Feature	Symbol Pb-Free (SnAgCu) Assembly			bly	Unit
		Minimum	Recommendation	Maximum	
Ramp-up Rate to Preheat 25 °C to 150 °C			2	3	K/s
Time t _S $T_{Smin} \text{ to } T_{Smax}$	ts	60	100	120	S
Ramp-up Rate to Peak T _{Smax} to T _P			2	3	K/s
Liquids Temperature	TL		217		°C
Time Above Liquids Temperature	t_L		80	100	S
Peak Temperature	T _P		245	260	°C
Time Within 5 °C of the Specified Peak Temperature T_P - 5 K	ТР			10	S
Ramp-Down Rate T _P to 100 °C			3	4	K/s
Time 25 °C to T _P				480	S


^{1.} Do not stress the silicone resin while it is exposed to high temperature.

^{2.} The reflow process should not exceed 2 times.

Application Circuit

1. Typical application circuit

Circuit description:

- 1. A bypass capacitor should be connected in parallel between VDD and GND of each bead. It is recommended to use the 104 capacitor.
- 2. Connected between the first LED bead and the MCU signal line is a 100Ω to 300Ω resistor, reducing surge voltage impact from the MCU output signal. Alternatively, it can be replaced with a magnetic bead to improve interference resistance.
- 3. Add a TVS diode at the power input position of the LED module. Its breakdown voltage should be between 5.5-7.0V, with a clamping voltage below 6.5V, to avoid damage from high voltage surges to the LEDs.
- 4. Each iCLed's DIN and CIN connect to an ESD diode, grounding it to reduce EMC interference.

 The clamping voltage of the ESD diode is controlled to about 5.5V.

2. Handling precautions

2.1 Over-current-proof

Customer must apply resistors for protection; otherwise slight voltage shift will cause big current change (Burn out will happen).

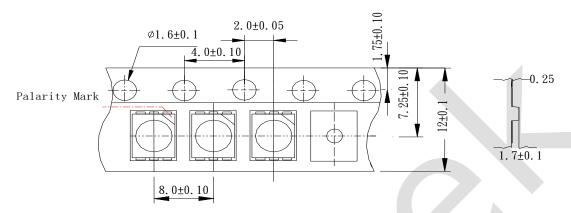
2.2 Storage

- ① It is recommended to store the products in the following conditions:
 - Humidity: 60% R.H. Max.
 - Temperature : $5^{\circ}\text{C}^{\circ}30^{\circ}\text{C}(41^{\circ}\text{F}^{\circ}86^{\circ}\text{F})$

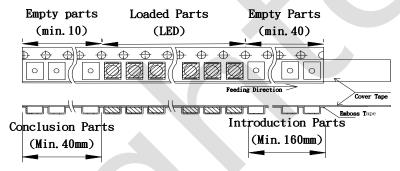
Shelf life in sealed bag: 12 month at $< 5^{\circ}\text{C}^{\sim}30^{\circ}\text{C}$ and < 60% R.H. after the package is Opened, the products should be used within 1 week or they should be keeping to stored at ≤20%R.H. with zip-lock sealed.

2.3 Baking

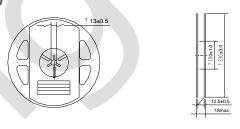
Suggest packing open after 1 week, before use baking products, conditions as follows:


- ① 60±3°C X 6hrs and < 5%RH, for reel
- 125±3°C X 2hrs, for single LED

It shall be normal to see slight color fading of carrier (light yellow) after baking in process.



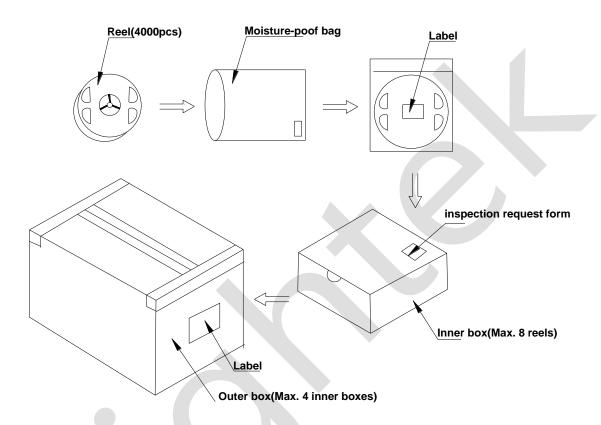
Taping


1. Dimensions of Tape (Unit: mm)

2. Arrangement of Tape

3. Dimensions of Reel (Unit: mm)

Note: 01.The tolerance unless mentioned is ±0.2mm. 02.The measured unit is "mm".


Notes:

- 1. Empty component pockets are sealed with top cover tape
- 2. The cathode is oriented towards the tape sprocket hole in accordance with ANSI/EIA RS-481 specifications
- 3. 4,000pcs per reel
- 4. The remainder packing in multiples of 500pcs.

Packing

Packaging Specifications

Reeled product (max.4,000) is packed in a sealed moisture-proof bag. Eight bags are packed in an inner box (size: about 260 X 230 X 100 mm) and four inner boxes are in an outer box (size: about 480 X 275 X 215 mm). On the label of moisture-poof bag, there should be the information of Part No., Lot No. and quantity number; also the total quantity number should be on inspection request form on outer box.

Barcode-Product-Label (BPL)

	MSL
Part No:	
O Item:	
N Item:	
Q'TY:	
VF:	(mA)
IV:	(mA)
WL:	(mA)
Lot No:	
XXXX-XXXX XXXX / PLSTXXXX	RoHS PASS

Part No : Product Number

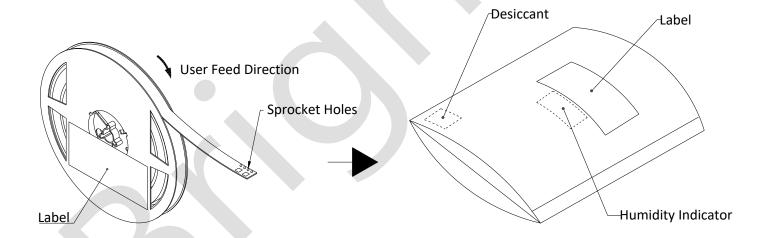
O Item: Customer's Product Number

N Item : Product Name

Q'TY : Packing Quantity

VF : Voltage Rank

IV : Luminous Intensity Rank


WL: Wavelength Rank

Lot No : Lot Number

MSL : MSL Level

Number

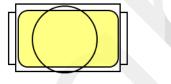
Dry Packing Process and Materials

Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card according JEDEC-STD-033.

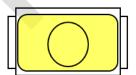
Precautions

Choosing the right nozzle for ensuring product quality

Incorrect nozzle settings can potentially lead to abnormalities. Please follow the instructions below during operation:


Nozzle lowering height

Incorrect height setting of the pick-and-place nozzle could result in over-pressure on the LED surface, further damaging the gold wire inside the LED during the SMT process.


Proper nozzle selection

Please choose a nozzle with an outer diameter larger than the optical window of the LED to avoid the directly touching or pressing on the encapsulant resin of function area. Please refer to the images below:

Outer diameter of the nozzle must be larger than the optical window

Picture 1 (√)

Picture 2 (X)

- Do not apply pressure to the reflector and the encapsulant resin of the LED under high temperature.
- Avoid scratching or wiping the LED surfaces to cause damages.

LEDs should be used immediately after taken out of the original packaging. We strongly recommend to seal and store the rest LEDs in the moisture-proof and anti-static packaging.

Disclaimer

- 1. Brightek reserves the right to adjust the material composition of the product to meet specification.
- 2. Within one year from the date of shipment, this product is guaranteed to comply with its specification published by Brightek.
- 3. The characterization figures shown in this data sheet are based on typical performance, which is not a guarantee to every piece of the products.
- 4. When using this product, please adhere to the maximum rating and the user instructions. Brightek disclaims any responsibility for damages caused by misuse of the product.
- 5. The content of this specification is protected by Brightek's copyright. Reproduction in any form is strictly prohibited without the permission of Brightek.
- 6. This product is not recommended for being used in military, aviation, life support, life-saving, or any applications. If there are specific application requirements, please contact Brightek's authorized sales agents.

